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Abstract

A Eulerian fixed grid approach to simulate the dynamics of two-phase interfaces in the presence of surface tension

forces is presented. This level set/vortex sheet method consists of a simplified system of equations that contain individ-

ual source terms describing the relevant physical processes at the phase interface explicitly. Hence, this approach pro-

vides a framework that will allow for a simplified subsequent modeling of phase interface dynamics in turbulent

environments. In the presented level set/vortex sheet method, the location and the motion of the phase interface are

captured by a level set equation. Topological changes of the interface, like breakup or merging, are thus handled auto-

matically. Assuming that all vorticity is concentrated at the phase interface, the phase interface itself constitutes a vor-

tex sheet with varying vortex sheet strength. The Eulerian transport equation for the vortex sheet strength is derived by

combining its Lagrangian formulation with the level set equation. The resulting differential equation then contains

source terms accounting for the stretching of the interface and the influence of surface tension, thus allowing for a

detailed study of each effect individually. The results of three test problems, namely the roll-up of a vortex sheet without

surface tension, the growth of the Kelvin–Helmholtz instability in the linear regime, and the long-time evolution of the

Kelvin–Helmholtz instability are presented.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The disintegration of a liquid jet or sheet into individual small drops can be divided into two consecutive

stages, the primary and the secondary atomization. The initial breakup of the liquid jet or sheet into large
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and small cohesive structures is called primary atomization, whereas the subsequent breakup of these indi-

vidual structures into ever smaller drops is called secondary atomization.

Usually, the atomization process occurs in a turbulent environment, involving a wide range of time and

length scales. Given today�s computational resources, the direct numerical simulation of the turbulent

breakup process as a whole, resolving all physical processes fully, is impossible, except for some specific,
simple applications. Therefore, models describing the physics of the atomization process at the numerically

non-resolvable scales have to be employed instead.

A wide variety of models has already been developed for the secondary breakup process. Here, the pre-

dominant liquid structures can be assumed to be of simple geometrical shape, like spheres or ellipsoids. The

interaction between these structures and the surrounding fluid can thus easily be taken into account and

statistical models describing the secondary breakup process in turbulent environments can be derived [1–5].

However, the assumption of simple geometrical shape does not hold true for the primary breakup pro-

cess, since here, the interface can assume any arbitrary shape. In this case, one potential approach is to start
off from a fully resolved description of the interface dynamics using the Navier–Stokes equations that in-

clude an additional source term in the momentum equations due to surface tension forces [6]. Usually, the

Navier–Stokes equations are then coupled to one of various possible tracking methods in order to track the

location, motion, and topology of the phase interface, as for example marker particles [7–9], the volume-of-

fluid method [10–12], or the level set method [13–15]. To overcome the computational limitations of a direct

numerical simulation of the primary breakup process, ensemble averaging or spatial filtering has to be

introduced, resulting in unclosed terms that require modeling [16,17]. Unfortunately, the derivation of such

closure models is not straightforward and hence has not been achieved yet. This is in part due to the fact
that, with the exception of the surface tension term, all other physical processes occurring at the phase inter-

face itself, like for example stretching, are not described by explicit terms, but rather are hidden within the

interdependence of the individual equations. Thus, a formulation containing these terms explicitly could

greatly facilitate any attempt to derive the appropriate closure models.

To this end, a novel Eulerian level set/vortex sheet approach is proposed. Within the scope of this

method, it is assumed that the effect of the viscous boundary layers adjacent to the phase interface can

be neglected. All vorticity is thus concentrated at the phase interface. Hence, the phase interface itself con-

stitutes a vortex sheet.
Usually, vortex sheets are solved by a boundary integral method within a Lagrangian framework where

the phase interface is tracked by marker particles, see for example [18–22]. Marker particles allow for highly

accurate tracking of the phase interface motion in a direct numerical simulation. However, the introduction

of ensemble averaging and spatial filtering of the interface topology is not straightforward and a strategy

for the derivation of closure models is not directly apparent. Level sets, on the other hand, have been suc-

cessfully used in the derivation of closure models in the field of premixed turbulent combustion [23,24].

Thus, to facilitate subsequent modeling approaches of the turbulent phase interface dynamics, here, the

phase interface location and motion are tracked by a level set approach.
The combination of vortex sheets and level sets in a Eulerian framework has been demonstrated in the

past [25,26]. There, however, surface tension forces have not been taken into account and a transport equa-

tion for only the unnormalized vortex sheet strength has been employed, resulting in a simple passive scalar

advection equation. Again, the physical processes at the phase interface are described not by explicit source

terms, but rather by the interdependence of the level set and the unnormalized vortex sheet strength

equations.

Therefore, in the approach presented in this paper, a transport equation for the normalized vortex sheet

strength is derived. Thus, the effect of surface tension forces and all other relevant physical processes occur
as individual source terms. The coupling of the proposed level set/vortex sheet method to an external tur-

bulent flow field can then provide a framework for the detailed study of these terms in a turbulent environ-

ment, resulting in a novel approach to derive closure models for the turbulent primary atomization process.
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This paper is divided into four parts. First, the governing equations for the transport of the normalized

vortex sheet strength and the level set scalar are derived. Then, the numerical methods applied to solve the

level set/vortex sheet approach are presented, followed by the results of three test problems, namely the roll-

up of a vortex sheet without surface tension forces, the growth of the Kelvin–Helmholtz instability in the

linear regime, and the long-time evolution of the Kelvin–Helmholtz instability. Finally, conclusions are
drawn.
2. Governing equations

To simplify the following derivations and discussion, we will limit ourselves to the two-dimensional case.

The extension to three dimensions is straightforward.

The focus of this paper is the motion of the phase interface C between two inviscid, incompressible fluids,
as shown in Fig. 1. In this case, the velocity u on either side i of the interface C is determined by the incom-

pressible Euler equations given here in dimensionless form as
r � ui ¼ 0; ð1Þ

oui

ot
þ ðui � rÞui ¼ � 1

qi
rp; ð2Þ
where q is the density and p is the pressure. In addition, the boundary conditions at the interface C,
½ðu1 � u2Þ � n�jC ¼ 0; ½ðu1 � u2Þ � t�jC ¼ g; ð3Þ

½p2 � p1�jC ¼ 1

We
j ð4Þ
and at the far field,
lim
y!�1

ui ¼
U�1

0

� �
; ð5Þ
have to be fulfilled. Here, n and t are the interface normal and tangential vector, g is the so-called vortex

sheet strength, We = qrefLrefuref
2/R is the Weber number, R is the surface tension coefficient, qref, uref, and

Lref are reference density, velocity, and length, respectively, and j is the local curvature of C. An interface

subjected to the above boundary conditions is called a vortex sheet, see for example [27]. Parameterizing the

interface location by
s, α

n
t

fluid 1

fluid 2

x

y

G > G0

G = G0

G < G0
Γ

Fig. 1. Interface definition.
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xða; tÞjC ¼
xða; tÞ
yða; tÞ

� �����
C

; ð6Þ
the velocity u at a point x away from the interface is given by
uðx; tÞ ¼
Z
C
g�ða; tÞez �

x� xða; tÞ
jx� xða; tÞj2

da; ð7Þ
where ez is the unit vector in the third dimension and g* is the unnormalized vortex sheet strength defined as
g� ¼ g
os
oa

; ð8Þ
with the arc length metric
os
oa

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ox
oa

� �2

þ oy
oa

� �2
s

: ð9Þ
The evolution equation for the unnormalized vortex sheet strength can be derived by introducing velocity

potentials into the Euler equations, Eqs. (1) and (2), and combining the result with the boundary conditions

at the interface, Eqs. (3) and (4), see for example [18,19,28]. The Lagrangian formulation for the evolution

of a vortex sheet with surface tension then reads
oxða; tÞ
ot

¼ uC; ð10Þ

og�ða; tÞ
ot

¼ 1

We
oj
oa

: ð11Þ
Here, uC is the velocity at the interface calculated from the principal value integration of Eq. (7). For sim-

plicity, the density of both fluids is assumed to be equal in the above equations.
To derive the Eulerian formulation of the above set of Lagrangian equations, the interface location is

first represented by the iso-surface of a scalar field G(x, t). Setting
Gðx; tÞjC ¼ G0 ¼ const:; ð12Þ
G(x, t) > G0 in fluid 1, and G(x, t) < G0 in fluid 2, see Fig. 1, an evolution equation for the scalar G can be

derived by simply differentiating Eq. (12) with respect to time and using Eq. (10),
oG
ot

þ u � rG ¼ 0; uðG ¼ G0Þ ¼ uC: ð13Þ
This equation is called the level set equation and goes back to Osher and Sethian [13]. Strictly speaking, Eq.

(13) is valid only at the location of the interface and is independent of the value of G away from the inter-
face. To facilitate the numerical solution of Eq. (13), G is usually chosen to be a distance function away

from the interface, i.e.
jrGjjG6¼G0
¼ 1: ð14Þ
Second, transforming Eq. (11) to a Eulerian formulation results in
og�

ot
þ u � rg� ¼ 1

We
os
oa

rj � t: ð15Þ
Making use of the level set scalar G, the interface tangential vector t, normal vector n, and curvature j can

be expressed as
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t ¼ 1

jrGj
oyG

�oxG

� �
; n ¼ rG

jrGj ; ð16Þ

j ¼ r � n ¼ r � rG
jrGj : ð17Þ
Again, Eq. (15) has physical meaning only at the location of the interface itself, that is G = G0, since only

there the surface tension term on the right-hand side is defined. Also, as is the case for the level set scalar G,

a reinitialization operation for values away from the interface would have to be prescribed.

As has been pointed out by Peng et al. [26], the unnormalized vortex sheet strength g*in itself does not

directly have a physical meaning, since, according to Eq. (3), only g = g*/oas represents a physical quantity,

namely the jump in tangential velocity at the interface. It will be shown below that oas is proportional to
|$G|, thus any change of |$G| , for example by the reinitialization condition, Eq. (14), requires a resetting

operation of g*. This resetting operation has been neglected in [25], but has been employed in [26]. Here, we

will derive a transport equation for the jump of the tangential velocity at the interface, i.e. the normalized

vortex sheet strength g. This approach has two advantages. On the one hand, since g is independent of |$G|,
no resetting operation of g is necessary. On the other hand, the transport equation for g contains individual

source terms related to the physical processes at the phase interface.

To derive the transport equation for the vortex sheet strength g, an equation for the arc length metric has

to be derived, cp. Eq. (8). To achieve this, the arc length metric is first expressed in terms of the level set
scalar G. Following the arguments by Harabetian and Osher [29], let us introduce a function /, such that

the pair (G,/) forms an orthogonal coordinate system near G = G0,
/ðxðaÞ; tÞ ¼ a: ð18Þ

Differentiating the level set scalar definition
GðxðaÞ; tÞ ¼ G0 ð19Þ

and Eq. (18) with respect to a and solving the resulting system leads to
ox

oa
¼ 1

J

�oyG

oxG

� �
; ð20Þ
where J is the Jacobian of (G,/),
J ¼ oxGoy/� oyGox/: ð21Þ

Inserting Eq. (20) into Eq. (9) and introducing r ¼ jrGjjG¼G0

results in
os
oa

¼ 1

jJ j r: ð22Þ
For the case analyzed here, the transport equation for J, derived in [29], reduces to
oJ
ot

þ u � rJ ¼ 0: ð23Þ
The evolution equation for r can be derived by applying the $ operator to Eq. (13) and multiplying the

resulting equation with n = $G/|$G|, which yields
or
ot

þ u � rr ¼ �ðn � ru � nÞr: ð24Þ
Then, combining this equation with Eqs. (8), (15), (22), and (23) gives, after some algebraic manipulations,

the transport equation for the vortex sheet strength g,
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og
ot

þ u � rg ¼ ðn � ru � nÞgþ 1

We
rj � t: ð25Þ
Here, the terms on the left-hand side describe temporal change and convective transport, respectively. The

first term on the right-hand side, S, describes the effect of stretching of the vortex sheet and the second term,

T, accounts for the influence of surface tension. Note that the above equation is valid only at the interface

location itself. To facilitate the numerical solution, a redistribution of g from the interface to the rest of the

computational domain is performed by solving
rg � rG ¼ 0: ð26Þ
This sets g ¼ gjG¼G0
¼ const: in the interface normal direction.

Finally, to close the system of Eqs. (13) and (25), the velocity u has to be calculated from a line integral of

the vortex sheet strength g by introducing Eq. (8) into Eq. (7), yielding
uðx; tÞ ¼
Z
C
gðs; tÞez �

x� xðs; tÞ
jx� xðs; tÞj2

ds: ð27Þ
For vortex sheets of length L that are periodic in the x-direction, following Milne-Thomson [30], Eq. (27)

can be transformed to
uðx; yÞ ¼ 1

2

Z L

0

gðsÞ sinh 2pðy � yðsÞÞ
cosh 2pðy � yðsÞÞ � cos 2pðx� xðsÞÞ þ l2

ds; ð28Þ

vðx; yÞ ¼ 1

2

Z L

0

gðsÞ sin 2pðx� xðsÞÞ
cosh 2pðy � yðsÞÞ � cos 2pðx� xðsÞÞ þ l2

ds: ð29Þ
Here, the problem that the integral can become singular for x ! x(s) is avoided by adding a positive con-

stant l2 to the denominator as proposed by Krasny [31].
The above approach for calculating the vortex sheet induced velocity u has one computational draw-

back. It requires the evaluation of a complete line integral for each point in the computational domain

and is thus very time consuming. Alternatively, a vortex-in-cell type approach [32] can be followed to cal-

culate u.

First, let w be the stream function given by
MwðxÞ ¼ xðxÞ; ð30Þ
where the vorticity x is defined by
xðxÞ ¼
Z
C
g�ðaÞdðx� xðaÞÞda ¼

Z
C
gðsÞdðx� xðsÞÞds ð31Þ
and d is the delta function [33]. Noting that any surface integral along G = G0 can be transformed to a vol-

ume integral by
Z
C
f ðsÞds ¼

Z
V
f ðx0ÞdðGðx0Þ � G0ÞjrGðx0Þjdx0: ð32Þ
Eq. (31) can be rewritten as
xðxÞ ¼
Z

gðx0Þdðx� x0ÞdðGðx0Þ � G0ÞjrGðx0Þjdx0: ð33Þ

V
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The vortex sheet induced velocity can then simply be calculated from
uðxÞ ¼
Z
V
dðx� x0Þðoywðx0Þ;�oxwðx0ÞÞTdx0: ð34Þ
To summarize, the level set equation (13) and the transport equation for the vortex sheet strength (25) to-
gether with either Eq. (27) or Eq. (34) form the system of Eulerian equations describing the dynamics of

phase interfaces in the presence of surface tension forces.
3. Numerical methods

The system of equations describing the phase interface dynamics are solved on an equidistant, Cartesian

grid. However, instead of solving the equations throughout the whole computational domain, a tube ap-
proach is employed to significantly speed up the computations. Following arguments by Peng et al. [26],

five distinct tubes around the G = G0 level set, called I-; I2-; B-;T-; and N-tube are introduced. The

condition for a grid node (i, j) to belong to one or more specific tubes is given by
ði; jÞ 2

I if jGi;jj 6 aIDx;

I2 if jGi;jj 6 2aIDx;

B if jGi;jj 6 aBDx;

T if jGi;jj 6 aTDx;

N if any ði0; j0Þ 2 T with i0 2 ½i� 3; iþ 3�; j0 2 ½j� 3; jþ 3�;

8>>>>>><
>>>>>>:

ð35Þ
with Dx being the grid size and typically aI = 4, aB = aI + 3, and aT = aB + 3. The use of the respective tubes

will be discussed in the following sections.

3.1. Convective terms

The level set equation (13) is a Hamilton–Jacobi equation. In this work, the third-order WENO scheme

for Hamilton–Jacobi equations of Jiang and Peng [34] is used. A Roe flux with local Lax–Friedrichs entro-
py correction (Roe-LLF) [35,36] is employed to solve both the level set equation (13) and the convective

term of the g-equation (25). Integration in time is performed by the third-order TVD Runge–Kutta time

discretization of Shu [37].

Solution of the convective terms is restricted to the T-tube, where, as suggested by Peng et al. [26], u in

Eqs. (13) and (25) is replaced by
ucut ¼ cðGÞu ð36Þ

with the cut-off function
cðGÞ ¼
1; aG 6 aB;
ðaG�aT Þ2ð2aGþaT�3aBÞ

ðaT�aBÞ3
; aB < aG 6 aT ;

0; aG > aT ;

8><
>: ð37Þ
and aG = |G|/Dx. This ensures that no artificial oscillations are introduced at the T-tube boundaries.

3.2. Source terms

Both the stretching term S as well as the surface tension term T in the g-equation (25) are integrated in

time within the convective TVD Runge–Kutta scheme. Since the source terms have physical meaning only
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at the interface itself, their evaluation is limited to the I-tube. For numerical reasons, these values are then

redistributed to the N-tube by solving
rS � rG ¼ 0; rT � rG ¼ 0: ð38Þ
3.3. Reinitialization

The reinitialization procedure employed here to solve Eq. (14) has originally been proposed by Sussman

et al. [14], where the Hamilton–Jacobi type equation
oHðx; t�Þ
ot�

þ SðHðx; t�ÞÞðjrHðx; t�Þj � 1Þ ¼ 0; ði; jÞ 2 N; ð39Þ

Hðx; t� ¼ 0Þ ¼ Gðx; tÞ � G0; ð40Þ

is solved until
jjHðx; t�Þ � Hðx; t� � Dt�Þjj1 < �1; ði; jÞ 2 B ð41Þ

with typically �1 = 10�3Dx. In Eq. (39), S(H) is an approximation to the sign function. As pointed out by

Peng et al. [26], the proper choice of this approximation is crucial to minimize undesired movement of the

H(x, t*) = 0 interface while solving Eq. (39). Here, we will use the approximated sign function [26]
SðHÞ ¼ Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 þ jrH j2ðDxÞ2

q ð42Þ
with a second-order central difference approximation for $H. Eq. (39) is solved by the third-order WENO
scheme, cp. Section 3.1, but employing a Godunov flux function instead of the Roe-LLF flux function.

Again, the solution in time is advanced by a third-order TVD Runge–Kutta scheme.

Reinitialization is limited to the N-tube which is three cells larger in each direction than the T-tube. In

[26], an extension of the T-tube by only one cell in each direction was proposed. However, it was found

that this still might introduce fluctuations in the solution, hence an extension by three cells is employed

here. The convergence criterium, Eq. (41), is evaluated within the B-tube only.
3.4. Level set correction methods

It is well known that the reinitialization equation (39) tends to unintentionally move the interface in re-

gions of high curvature of G, that is corners of the interface or regions where two or more interface seg-

ments are close to each other, even if higher order WENO schemes are employed. Several different

correction methods to overcome this problem have been proposed in the past. Here, we use two different

approaches.

The first level set correction method is due to Sussman and Fatemi [38]. It aims to preserve the volume of

fluid 1, where G > G0, in each grid cell during reinitialization and will henceforth be called volume correc-
tion. Here, we will use their original first-order formulation, see [38] for details.

The second level set correction method is based on a combination of the level set equation with marker

particles due to Enright et al. [39]. The basic idea is to use Lagrangian particles to correct the errors in the

position of the interface as represented by the level set scalar. Here, we will use the scheme described in

detail in [39] with one modification, namely that the velocity of the non-escaped Lagrangian particles vp
is not the flow velocity at their location xp, but rather the velocity at the interface location closest to the

particle position,
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vp ¼ uðxp � SðGðxpÞ � G0ÞðGðxpÞ � G0ÞnðxpÞÞ: ð43Þ

This modification ensures that even in flows with strong normal gradients of the interface tangential veloc-

ity, particles are moving in accordance with their closest interface point. This second level set correction

method will be denoted as particle correction in the following.

3.5. Redistribution

A Fast Marching method is employed to solve the redistribution Eqs. (26) and (38). Here, we use the

standard second-order method as described in detail in [40,41]. Redistribution is performed in the N-tube

only.

Employing a Hamilton–Jacobi equation based redistribution as proposed by Peng et al. [26] instead of

the Fast Marching method proved to introduce too much undesired tangential transport in the redistrib-
uted scalars, g, S, and T. Hence, this method has not been used here.

3.6. Velocity calculation methods

Three different methods, denotedM1 through M3, are used to calculate the vortex sheet induced velocity

u. Method M1 is based on the line integral (27), whereas methods M2 and M3 are based on the vortex-in-

cell type approach, Eqs. (31) and (33), respectively.

3.6.1. Line integral formulation: method M1

Eq. (27), or, in the case of periodic vortex sheets, Eqs. (28) and (29) are used to calculate the vortex sheet

induced velocity u at every grid point in the T-tube.

To evaluate the line integrals in these equations, the geometric location of the interface G = G0 has to be

reconstructed. Grid cells containing part of the interface are easily identified by
: min
i�2½i;iþ1�;j�2½j;jþ1�

Gi�;j� > G0 _ max
i�2½i;iþ1�;j�2½j;jþ1�

Gi�;j� < G0

� �
: ð44Þ
The entry and exit coordinates of the interface into these cells are calculated by approximating G by cubic

splines along the grid lines. The interface shape itself is assumed to be a straight line connecting the entry
and exit points in each cell. The integration along these line segments is performed by five point Gaussian

quadrature, with g at the quadrature points calculated from two-dimensional third-order B-splines. This

approach will be denoted as method M1.

The disadvantage of using method M1 is the fact that it is computationally expensive, because for each

grid node in the T-tube a line integral has to be evaluated. Furthermore, the interface location and topol-

ogy must be reconstructed, thus loosing in effect one of the benefits of the level set approach. However,

method M1 is highly accurate for l ! 0 in Eqs. (28) and (29) and is thus used as a reference method in

the following.

3.6.2. Vortex-in-cell approach: methods M2 and M3

In order to solve the Poisson equation for the stream function, Eq. (30), the vorticity at each grid point in

the computational domain has to be calculated by a numerical version of either Eq. (31) or Eq. (33).

Approximating the delta function by a smoothed version, the vorticity, theoretically located solely on

the interface, is in effect spread out to the neighboring grid nodes. Hence, this approach is similar to the

vortex-in-cell method that spreads the vorticity of Lagrangian vortex particles to their surrounding grid

nodes [32,33]. Quite a number of spreading functions have been proposed to this end [42]. Here we will use
dðx� xðsÞÞ ¼ deðx� xðsÞÞdeðy � yðsÞÞ; ð45Þ
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dðGðx0Þ � G0Þ ¼ deðGðx0Þ � G0Þ; ð46Þ
with the numerical delta function de as proposed by Peskin [43]
deðxÞ ¼
1
2e 1þ cos px

e

� �� �
; jxj 6 e;

0; jxj > e;

	
ð47Þ
and the spreading parameter e set to e = aIDx.
If the vorticity is calculated by Eq. (31), the integration along the interface is calculated analogous to

method M1 described in Section 3.6.1, thus requiring the reconstruction of the location and topology of

the phase interface from the level set scalar field. Note, however, that in contrast to Eqs. (28) and (29),
the integration of Eq. (31) only needs to be performed in the I-tube and can be confined to
xðxÞ ¼
Z
C0
gðsÞdðx� xðsÞÞds; ð48Þ
where C 0 is the part of the interface with |x � x(s)| 6 e and |y � y(s)| 6 e. This approach shall be called

method M2 in the following.
If the vorticity is calculated by Eq. (33), denoted in the following as method M3, the reconstruction of

the interface location and topology as required in method M2 is avoided. The integration in Eq. (33) is per-

formed by first evaluating
Xðx0; tÞ ¼ gðx0; tÞdðGðx0Þ � G0ÞjrGðx0Þj ð49Þ
for all cells within the I-tube and then integrating
xðx; tÞ ¼
Z
V 0
dðx� x0ÞXðx0; tÞdx0 ð50Þ
for all cells within the I2-tube by a simple midpoint rule, with V 0 being the area, where |x � x 0| 6 e and
|y � y 0| 6 e.

The Laplace equation for the stream function, Eq. (30), is solved by the package FISHPACK [44]

throughout the whole computational domain employing appropriate boundary conditions for the stream
function w.

Finally, the calculation of the vortex sheet induced velocity u from the stream function, Eq. (34), for both

methods M2 and M3 is again a two-step process. First, an initial velocity U is calculated at each grid node

by second-order central differences
Ui;j ¼
wi;jþ1 � wi;j�1

2Dy
;�

wiþ1;j � wi�1;j

2Dx

� �T

: ð51Þ
Second, in order to be consistent with the spreading step of the vorticity, Eq. (48) or Eq. (33), the same

numerical integration method and d function has to be used in the interpolation step to calculate u,
uðx; tÞ ¼
Z
V 0
dðx� x0ÞUðx0; tÞdx0; ð52Þ
evaluated within the T-tube. Note that Eq. (52) defines a consistent interpolation step only, if the vorticity

is calculated by method M2. Since method M3 involves an additional delta function of the level set scalar G

in Eq. (33), no consistent interpolation step can be defined. Nevertheless, Eq. (52) is still employed as the

interpolation step for method M3.
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4. Results

Three different test problems are presented in the following to validate the level set/vortex sheet method

proposed in this paper. First, the roll-up of vortex sheets without surface tension forces is discussed. The

objective of this test problem is to analyze the desingularization and convergence properties of the level set/
vortex sheet method. Furthermore, the different velocity and level set correction methods are compared,

and the influence of the delta function spreading parameter e is analyzed. Second, results of the calculated
growth rate of the Kelvin–Helmholtz instability in the linear regime are compared to linear theory in order

to evaluate the accuracy of all three velocity methods. Finally, the long-time evolution of the Kelvin–Helm-

holtz instability for three different Weber numbers is presented.
4.1. Vortex sheet roll-up

4.1.1. Moore singularity

Pure vortex sheets represent a special class of phase interfaces in that no surface tension forces exist.

Thus, they do have constant unnormalized vortex sheet strength g*, cp. Eq. (11). However, pure vortex

sheets constitute an ill posed problem, since linear theory predicts that the growth rate of a sinusoidal dis-

turbance of wave number k is proportional to k. Thus, as pointed out by Moore [45], a vortex sheet devel-

ops a singularity at some critical time tc, typically a discontinuity in curvature.

In order to calculate the behavior of the vortex sheet beyond tc, some form of desingularization has to be

introduced, either by replacing the exact equations by desingularized versions, see for example the vortex
blob method [31], cp. Eqs. (28) and (29), or by adding physical effects like surface tension forces [19] or

viscosity [46].

In the case of the level set/vortex sheet method presented here, desingularization is twofold. For one, all

transport equations are solved by a finite difference scheme on an underlying numerical grid, thus all deriv-

atives of finite quantities are inherently limited by the employed grid spacing. Second, the delta functions in

methods M2 and M3 are approximated by the numerical delta function de of finite width e, Eq. (47). Thus,
vorticity is not solely located at the interface but spread out to neighboring grid nodes. To some extent, this

crudely mimics the effect of viscosity [46], since the shear layer is not of zero thickness as in the inviscid case,
but rather has a finite, constant thickness proportional to e.

In order to provide a first validation of the level set/vortex sheet method, the critical time tc in the non-

desingularized limit is estimated following Krasny [31] by successively reducing the degree of desingulari-

zation. The initial conditions used are those proposed by Meiron et al. [47]. Initially, the vortex sheet is flat

and located at y = 0 inside a box of size [0,2p] · [�p,p] with a sinusoidal disturbance of the vortex sheet

strength, g ¼ 1þ a cos x and a = 0.125. With these initial conditions, the predicted critical time is

tc � 2.84 [48]. Three calculations were performed, successively reducing the desingularization, i.e. the grid

spacing and the spreading parameter, from Dx = 2p/256 with e = 16/256, to Dx = 2p/512 with e = 8/256, and
to Dx = 2p/1536 with e = 6/256.

Fig. 2 shows the distribution of curvature and curvature derivative, osj, along the normalized arclength

s/L at two different times close to the critical time tc. Both the curvature and the curvature derivative dis-

tributions clearly show the onset of the Moore singularity at s/L = 0.5. Decreasing the desingularization

obviously increases the curvature derivative at any given time. However, the e = 6/256 case shows some

small fluctuations of osj not present in the other two cases. This is due to the fact that a decrease of e
increases the growth rate of higher wave number fluctuations [31]. The initial amplitudes of these higher

wave number disturbances are due to the numerical error associated with the employed numerical grid.
Obviously, the 1536 · 1536 grid is barely sufficient to delay the growth of these higher wave number distur-

bances. A further reduction of e would thus require a substantially finer grid. Furthermore, at t = 3.2 the



Fig. 2. Vortex sheet curvature (top) and curvature derivative (bottom) at times close to the critical time, t = 3.0 (left) and t = 3.2 (right)

for e = 16/256 (dashed), e = 8/256 (dotted), and e = 6/256 (solid).
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osj distribution for both e = 8/256 and e = 6/256 exhibits two local minima directly adjacent to the central

maximum. This behavior is consistent with that reported by Shelley [48].

To determine tc in the non-desingularized limit, the critical time for each of the three calculations is esti-

mated using a procedure proposed by Shelley [48]. The values of 1/osj at s/L = 0.5 between t = 1.0 and
t = 3.2 are extrapolated to zero using a third order polynomial that provides an excellent fit to the data

points. The resulting critical times are shown in Fig. 3 as a function of the spreading parameter e. A linear

extrapolation is then used to estimate tc for e ! 0 and Dx ! 0, yielding a critical time of tc = 3.001.

Although this time is slightly larger than the critical time predicted by theory, it is in excellent agreement

with the results of Shelley [48], who estimates tc = 3.015 using a high accuracy point-vortex method.

4.1.2. Evolution beyond the Moore singularity

As discussed in the previous section, the presented method desingularizes the vortex sheet problem such
that calculations beyond the Moore singularity are possible. The initial conditions used to study the long-

time evolution are similar to those used by Krasny [31]. The initial shape of the interface,
xða; t ¼ 0Þ ¼ aþ A0 sin 2pa; ð53Þ

yða; t ¼ 0Þ ¼ A0 sin 2pa; ð54Þ

is represented by setting



Fig. 3. Estimation of critical time.
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Gðx; t ¼ 0Þ ¼ y � A0 sin
2p
B

x� A0 sin
2p
B

x

 �� �

; ð55Þ
with amplitude A0 = 0.01 and B = 1. The initial unnormalized vortex sheet strength is g* = �1. Thus, the

initial vortex sheet strength can be determined to be
gVSðx; t ¼ 0Þ ¼ g�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4pA0

B cos 2p
B xþ 2 2pA0

B cos 2p
B x

� �2q : ð56Þ
To satisfy Eqs. (14) and (26), a reinitialization and a redistribution step are then performed. Calculations

are performed in a box of size B · B on an equidistant 256 · 256 Cartesian grid with periodic boundary

conditions at the left and right and slip walls at the bottom and top.

Fig. 4 shows the temporal evolution of the vortex sheet calculated with velocity method M2, particle cor-

rection of the level set, and a spreading parameter of e = 16/256. A vertical slope of the interface is achieved
at t = 0.74, whereupon roll-up is initiated. The outside shape of the vortex sheet initially is almost circular,

but is stretched progressively into a more elliptical shape, while ever more turns are generated in the central

core roll-up region.

Fig. 5 shows the vortex sheet strength g, curvature j, and stretching term S along the interface�s normal-

ized arc length s/L at four different times. Here, L denotes the length of the phase interface. The stretching

term S is initially positive at both ends of the vortex sheet and negative in the middle part, leading to a

decrease of the absolute value of g at both ends of the sheet and an initial increase in the central roll-up

region, consistent with the mechanism forming the Moore singularity. This creates a local maximum in
the absolute value of g at s/L = 0.5, which, although decreasing over time, persists for later times. The vis-

ible local variations of S along s/L are due to the change in direction of the interface caused by the roll-up of

the vortex sheet. This in turn leads to the local variations of g along s/L. The distribution of the interface

curvature clearly shows the discontinuity of j at s/L = 0.5 due to the Moore singularity. However, j exhib-

its strong fluctuations in the inner part of the roll-up region, s/L = 0.4, . . . , 0.6, for later times. The reason

for this behavior can be attributed to the level set particle correction method and is analyzed in more detail

below.
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Fig. 4. Vortex sheet shape, 256 · 256 grid, method M2, particle correction, e = 16/256, t = 1, 2, 3, and 4.
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Nonetheless, the results obtained here are in excellent agreement with the vortex sheet roll-up reported

by Krasny [31], both in terms of the outside shape of the vortex sheet as well as the number of turns gen-

erated in the central core region for comparable values of the respective desingularization parameters.

4.1.3. Grid resolution study

In order to demonstrate grid convergence of the solution, Fig. 6 shows the interface shape at t = 3 for a

constant spreading parameter e = 16/256 and four different levels of grid resolution. Obviously, a grid res-
olution of 64 · 64 is insufficient to support the small scale structures in the inner core region of the roll-up

and merging occurs. At a resolution of 128 · 128, the grid itself is sufficient to avoid merging, however, the

interface is rough with small scale wiggles. These are due to the particle level set correction scheme that on

the one hand ensures the non-merging of the interface, but does so at the cost of introducing local fluctu-

ations into the interface geometry. At 256 · 256, the grid resolution is fine enough to avoid most particle

corrections and the interface is predominantly smooth. Finally, at 512 · 512, the interface shape seems very

similar to the one at 256 · 256, the only difference being that due to the increased resolution about one half

of an additional turn is generated in the central core.
Assuming that the 512 · 512 grid represents the exact solution, Table 1 shows the interface position error

E [38],
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Table 1

Interface position error E and order of convergence for vortex sheet roll-up

Grid E(t = 1) Order E(t = 2) Order E(t = 3) Order

64 · 64 0.0194 0.0469 0.0929

128 · 128 0.0074 1.4 0.0220 1.1 0.0369 1.3

256 · 256 0.0020 1.9 0.0099 1.1 0.0186 1.0
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E ¼
Z
V
jHðG512ðxÞÞ � HðGðxÞÞjdx; ð57Þ
evaluated by partitioning each grid cell into 100 · 100 subcells, with G calculated by bilinear interpolation.

As can be seen, the level set/vortex sheet method achieves slightly better than order one convergence.

4.1.4. Influence of level set correction methods and spreading parameter

The influence of the velocity calculation and level set correction methods is shown in Fig. 7. The top row

depicts the shape of the vortex sheet at t = 3 calculated with velocity method M2 without and with one of

the two level set correction methods. The bottom row shows the respective results obtained with method

M3. Although the outside shape of the vortex sheet is uninfluenced by the choice of velocity calculation

and level set correction methods, the central roll-up region of the vortex sheet exhibits significant differ-

ences. Without any level set correction scheme, method M2 generates more than two additional turns com-

pared to method M3. This can be ascribed to the transformation from the surface to the volume integral in
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-200

-100

0100

200
0

M . H e r r m a n n / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 0 3 ( 2 0 0 5 ) 5 3 9 … 5 7 1 5 5 5
Eq. (33), employed in the derivation of method M3. If two or more interface segments are closer than e
from a given point x 0, the numerical delta function de(G(x 0) � G0), Eq. (46), will only take the closest inter-

face segment into account, whereas all other interface segments are incorrectly neglected. This is due to the

single valued nature of the level set scalar. In the case of the vortex sheet roll-up, this leads to an under-

prediction of the vorticity x in the central core region for larger times, when the interface segments are less
than 2e apart. This in turn causes the central core velocities to be under-predicted, resulting in the above

mentioned underperformance of method M3 with regard to the number of turns in the central core. Meth-

odM2 on the other hand does not suffer from this problem, because Eq. (45) is not based on a single valued

function, but rather on the geometrical distance to each interface segment.

Furthermore, Fig. 7 shows that the application of a level set correction method has hardly any influence

on the results when applied in conjunction with method M3. Since method M3 produces fewer turns in the

central core, adjacent interface segments are still sufficiently far apart as to induce any significant numerical

error in the level set advection or reinitialization step that would require correction. However, a significant
influence can be discerned when using either one of the level set correction methods in conjunction with

method M2. This is due to the fact that now the interface segments in the central core are so tightly packed

that without using any correction, undesired movement of the interface caused by the reinitialization iter-

ation, Eq. (39), prohibits any additional turns. Using the volume correction [38] alleviates part of this prob-

lem and one more turn is generated. The particle correction [39] is even more effective, as it generates two

additional turns as compared to using no level set correction method at all.

However, both level set correction schemes share one major drawback. Fig. 8 depicts the curvature dis-

tribution along the normalized arc length at t = 3 for method M2. Without any level set correction method,
the curvature distribution remains smooth and no spurious fluctuation can be discerned. Employing the

volume correction method, some small spurious fluctuations in the curvature distribution appear. This re-

sults in large fluctuations of the derivative of the curvature needed to calculate the surface tension term T in

Eq. (25). Using the particle correction scheme aggravates this behavior, as strong spurious fluctuation can

be seen clearly in the curvature distribution. The reason for these fluctuations may be attributed to the local

nature of the level set correction methods. Both detection and correction of numerical errors in the level set

scalar field are performed only locally. In addition, corrections in the particle correction method are only

performed, if a local threshold error is surpassed [39]. Hence, one cell might be corrected, while a neighbor-
ing cell is still left untouched resulting in the observed fluctuations in the curvature distribution. To over-

come this shortcoming of the correction methods, a non-local correction, keeping the nth derivative of the

level set scalar smooth, has to be devised. Within the scope of the presented level set/vortex sheet method,

the 3rd derivative of G would have to be kept smooth due to the surface tension term T in the g-equation
(25). Since such a non-local correction scheme is presently unavailable, all calculations involving surface

tension forces are performed without using any level set correction method at all.

The influence of decreasing the spreading parameter e is shown in Fig. 9. Here, close-ups of the central

core region at t = 1 calculated on a 512 · 512 equidistant grid with velocity method M2, particle correction
M2, PCM2, VCM2
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and varying e are shown. Decreasing e obviously increases the number of generated turns. These results are
consistent with those reported by Krasny [31], where a decrease of the desingularization parameter l in Eqs.

(28) and (29) also yielded an increase in the number of turns.

However, as discussed above, decreasing the spreading parameter further to e = 5/256 results in the

noticeable growth of secondary instabilities of higher wave number, as shown in Fig. 10. This is consistent

with linear theory, since larger wave number disturbances are associated with higher growth rates. The

effect of the spreading parameter e is thus similar to the effect of the desingularization parameter l in

[31], in that increasing e decreases the growth rates of these higher wave numbers. Consequently, decreasing

e allows higher wave numbers to grow faster. Note also that at t = 1 some interface segments have merged.
This is due to the fact that, if two adjacent interface segments enter the same computational grid cell, the

single valued level set scalar is unable to resolve both segments simultaneously. Hence, merging of these

interface segments occurs automatically.

Finally, Fig. 11 depicts the distribution of curvature along the interface at t = 0.5 for decreasing spread-

ing parameters e. For e P 8/256 no secondary instabilities can be discerned. However, some small second-

ary instabilities are visible for e = 6/256 and they become of major importance for e = 5/256. As indicated

above, these results are consistent with linear theory.
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4.2. Kelvin–Helmholtz instability in the linear regime

A velocity shear between two fluids can give rise to the so-called Kelvin–Helmholtz instability, if the

velocity profile between the two fluids exhibits an inflexion point [49]. This phenomenon was first studied

by Helmholtz [50] and Kelvin [51] in the inviscid limit for a shear layer of zero thickness, i.e. a velocity dis-

continuity. For fluids of equal density, the growth rate w in the linear regime for the unbounded case is
wðWeÞ ¼ k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2k

We

r
: ð58Þ
The case of a shear layer of finite size and constant shear was subsequently analyzed by Rayleigh [49]. In the

inviscid and We = 1 limit, the growth rate w in the linear regime becomes
wðdÞ ¼ k
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e�2kd þ 2kd � 1

ðkdÞ2
� 1

s
; ð59Þ
with d the shear layer thickness defined as
d ¼ g
ðou=oyÞmax

: ð60Þ
Although numerical solutions are possible for arbitrary shear layer velocity profiles [52,53], comparisons

will be limited to the above analytical solutions for validation purposes.

The initial conditions for the level set scalar G are given by Eq. (55) with A0 = 1 · 10�5 and B = 1. The

initial vortex sheet strength distribution is calculated from
gðx; t ¼ 0Þ ¼ wðWeÞ
wðWe ¼ 1Þ ðgVSðx; t ¼ 0Þ � g�Þ þ g� ð61Þ
with g* = �1 and gVS given by Eq. (56). Periodic boundary conditions are employed at the left and right

domain boundary whereas slip conditions are used at the lower and upper boundary. This in theory con-

stitutes a bounded shear layer flow. However, the upper and lower boundary are placed sufficiently far

away from the interface, as to have no further influence on the presented results, thus allowing comparisons

with the theoretical results of the unbounded case. All simulations are performed in a B · 2B box employ-

ing an equidistant 256 · 512 Cartesian grid.

Fig. 12 compares the growth rates w calculated using the three different velocity calculation methods,
w ¼ 1

t1

Z t1

0

wðtÞdt; t1 ¼ 0:5; ð62Þ
to the results obtained by linear theory for varying e, Eq. (58). Table 2 lists the respective numerical values.

As expected, the agreement between calculation and theory is best for the reference method M1, because no

numerical spreading function is required to calculate the vortex sheet induced velocity. For the lowest value
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Table 2

Linear growth rates w of the Kelvin–Helmholtz instability for varying e and We, 256 · 512 grid, methods M1, M2, and M3

Method/We 13 20 50 100 1000 1
Theory 0.574 1.915 2.718 2.938 3.122 3.142

M1, l = 0 0.535 1.881 2.685 2.903 3.073 3.084

M2, e = 4/256 0.552 1.856 2.638 2.852 3.021 3.034

M3, e = 4/256 0.726 1.991 2.756 2.965 3.129 3.140

M2, e = 8/256 0.426 1.744 2.505 2.717 2.886 2.899

M3, e = 8/256 0.429 1.703 2.472 2.682 2.849 2.863

M2, e = 16/256 0.329 1.568 2.316 2.521 2.685 2.698

M3, e = 16/256 0.267 1.569 2.332 2.539 2.703 2.717
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of the spreading parameter, e = 4/256, method M2 slightly under-predicts the linear growth rate by about

3%. This is due to the introduction of the numerical spreading function in Eq. (48) and the consequently

theoretically reduced linear growth rate, cp. Eq. (59). Method M3 on the other hand marginally overpre-

dicts the linear growth rate for e = 4/256, but gives slightly lower w than M2 for larger e. The reason for this

behavior is not directly apparent, but it is most likely due to the lack of a consistent level set based inter-

polation step to calculate the vortex sheet induced velocity u, Eq. (52). Increasing e results in a consistent

reduction of the growth rate for both M2 and M3.

In order to further analyze this behavior, Fig. 13 depicts the growth rate w as a function of the shear
layer thickness d = e in the limit of We = 1 as compared to the analytical solutions, Eqs. (58) and (59).

The corresponding numerical values are shown in Table 3. While the qualitative behavior of the simulations

and the theory for a linear velocity profile is similar, both velocity methods exhibit overall larger growth

rates and hence reach their neutrally stable solution at a larger shear layer thickness of d � 0.8. This quan-

titative deviation is due to the different velocity profiles of Eq. (59) and the numerical methods. The former

assumes a linear profile, whereas the latter employs a rather complex profile due to the schemes outlined in

Section 3.6.2.

Finally, Fig. 14 shows the distribution of the stretching term S and the tension term T along the normal-
ized arc length s/L at t = 0.5 calculated with velocity method M2 and e = 4/256. For We = 13 both terms

almost balance, resulting in a small growth rate w. For increasing Weber numbers, the stretching term S

starts to dominate the surface tension term T resulting in larger growth rates w. For We = 1 secondary
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Table 3

Linear growth rates w of the Kelvin–Helmholtz instability for varying e, We =1, 256 · 512 grid, methods M2 and M3

Method/d = e 4/256 8/256 16/256 32/256 64/256 128/256 160/256 192/256

Theory Eq. (58) 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142

Theory Eq. (59) 2.939 2.742 2.361 1.609 Stable Stable Stable Stable

M2 3.034 2.899 2.698 2.281 1.489 0.380 0.133 0.032

M3 3.140 2.863 2.717 2.224 1.342 0.320 0.110 0.026

We = ooWe = 100We = 13
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instabilities of higher wave number emerge in the distribution of the stretching term, which is consistent

with the result reported for the vortex sheet roll-up, cp. Section 4.1.

In conclusion, agreement between the results calculated by the level set/vortex sheet method using any

one of the three velocity methods and those obtained from linear theory is very good.

4.3. Long-time evolution of the Kelvin–Helmholtz instability

The evolution of the two-dimensional Kelvin–Helmholtz instability has been studied by a number of

authors in the past, see for example [19,22,54]. However, the long-time evolution up to possible topology

changes of the interface has been analyzed only by a relatively small number of authors, using a variety of

different numerical methods, see [20,55–57].

In the inviscid case, Hou et al. [20] employed marker vortices to track the interface and adaptive methods

to approach and resolve singularities in the interface evolution. In the viscous case, Tauber et al. [55] solved

the Navier–Stokes equations with an additional source term in the momentum equation to account for sur-



face tension, together with marker points tracking the evolution of the interface. A similar approach has

been proposed by Scardovelli and Zaleski [57] employing the Volume-of-Fluid method to track the inter-

face instead.

Here, we will study the long-time evolution of the Kelvin–Helmholtz instability for three different Weber

numbers, We = 20, 50, and 100. To allow for a direct comparison with the results of Hou et al. [20], their
initial conditions are used here, namely Eq. (55) and Eq. (56) with A0 = 0.01 and g* = �1. All calculations

were performed in a B · 2B box on an equidistant 256 · 512 Cartesian grid.

Besides the desingularization discussed in Section 4.1.1, surface tension introduces an additional regular-

ization. Using linear theory, it is easy to show that surface tension forces suppress the growth of higher

wave number disturbances [58], cp. also Eq. (58). A detailed discussion of the effect of surface tension

on the vortex sheet evolution can for example be found in [54].

4.3.1. We = 20 case

Fig. 15 shows the temporal evolution of the interface shape for We = 20 and increasing values of the

spreading parameter e, while Fig. 16 shows the corresponding evolution of the amplitude A of the distur-

bance. As can be seen, for early times, the amplitude of the disturbance grows rapidly, fastest in the case of

the lowest value of e, and slightly slower for the cases with increased e. The growth rates are initially higher

than linear theory predicts. This is due to the employed initial condition for g that does not take the reduc-

tion in growth rate due to surface tension forces into account. As shown in Section 4.2, correcting g(t = 0)

accordingly results in good agreement with the theoretical linear growth rate. Apart from the difference in

amplitudes, the shapes of the interfaces are very similar for varying e. After the initial fast growth, the inter-
face becomes significantly steeper on the downwind side and finally folds over there, forming fingers

stretching into the opposite fluid. At later times, the interface still continues to grow, albeit at a smaller rate.

A similar behavior has been observed in the inviscid simulations of Hou et al. [20]. There, the fingers

continue to grow over the midpoint extending ever longer into the opposite fluid. In the viscous simulations
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of Tauber et al. [55] on the other hand, the growth of the interface is eventually stopped and reversed, gen-
erating a standing capillarity wave. This is due to the growing shear layer thickness in the presence of vis-

cosity, reducing the effect of stretching so that surface tension starts to dominate. To a certain degree, the

presented level set/vortex sheet method falls between these two approaches. Unlike the inviscid method,

here, the desingularization introduces a finite shear layer thickness, that is however constant in time and

not increasing as in the fully viscous case. Nonetheless, artificially increasing e, i.e. increasing the shear layer
thickness, has a similar effect here as in the fully viscous simulations of Tauber et al. [55] in that the growth

rate is decreased, cp. Fig. 16.

Fig. 17 depicts the vortex sheet strength g, the interface curvature j, the stretching term S, and the ten-
sion term T along the interface for e = 8/256, while Fig. 18 shows the corresponding long-time evolution of

the interface shape. As has been reported by both Hou et al. [20] and Tauber et al. [55], the initial single

extremum of the vortex sheet strength starts to split up into two extrema located at the tip of the fingers.
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These finger tip vortices are however not strong enough to bend the fingers significantly, consistent with the

results reported in [20]. Furthermore, surface tension forces are strong enough to prevent the formation of

any discontinuity in the curvature distribution. At later times, only the highly curved finger tips are clearly

visible in the curvature distribution. Both the stretching term S and tension term T are predominantly

located at the finger tips. While the stretching term exhibits a smooth distribution, the tension term shows
some local spikes. These appear to be numerical in nature and are most likely due to the numerical scheme

used to reinitialize the level set scalar. Alternative numerical schemes that ensure convergence for higher

derivatives of the level set scalar, like the recently proposed discontinuous spectral element method for level

sets [59], could alleviate this problem.

4.3.2. We = 50 case

The temporal evolution of the interface shape forWe = 50 and increasing values of the spreading param-

eter e is depicted in Fig. 19, while Fig. 20 shows the corresponding evolution of the amplitude A of the
disturbance.
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Again, due to the initial condition for g, the growth rates are slightly higher than linear theory predicts at

early times. Following this initial fast growth of the amplitude, the interface quickly folds over and forms

two, initially straight, elongated fingers that extend ever further into the opposing fluid. This behavior is in

good agreement with the observations of both Hou et al. [20] and Tauber et al. [55]. Varying the spreading

parameter e only has a small effect on the overall shape of the interface. However, decreasing the shear layer

thickness by decreasing e slightly increases the initial growth rate so that at any given time the interface for
lower e extends slightly further into the cross-stream direction.

Fig. 21 depicts the vortex sheet strength g, the interface curvature j, the stretching term S, and the ten-

sion term T along the interface for e = 8/256, while Fig. 22 shows the corresponding long-time evolution of

the interface shape. As is the case for We = 20, two maxima in the absolute value of g are observed at the
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rounded edges of the two fingers. Although the Weber number is larger in this case, the magnitude of the
surface tension forces is comparable, because here, both the local curvature and the tangential curvature

gradient at the end of the fingers are higher.

For later times, a bulge forms at the finger tips that is significantly bent into the cross stream direction.

This tip bending has also been observed by both Hou et al. [20] and Tauber et al. [55], albeit that the bend-

ing in [20] is much smaller than the one observed here and in [55]. Furthermore, consistent with the results

in [20], the two fingers continue to grow, such that the growth reversal and eventual pull back of the fingers

as reported in [55] is not observed here. The behavior reported in [55] is due to the growth of the shear layer

thickness, reducing the effect of stretching so that surface tension starts to dominate. Here, however, the
shear layer thickness is constant in time, meaning that the ratio of stretching and tension is basically fixed,

leading to the observed continual growth of the fingers. At roughly t = 9.4, the thin neck is no longer sup-

ported by the underlying grid and the neck ruptures. The ruptured ends then quickly retreat, finally forming

two drops. Note that this breakup is a numerical effect due to the single valued nature of the level set scalar

and the employed numerical grid resolution. If two interface segments enter the same numerical grid cell,

breakup takes place automatically. Thus, the employed numerical resolution influences the exact point in

time of breakup. Local mesh refinement in conjunction with an additional physical small scale breakup

model would have to be used in order to capture the breakup time correctly. This, however, is beyond
the scope of the present paper.

4.3.3. We = 100 case

To first ascertain the influence of the employed numerical grid resolution, Fig. 23 shows the temporal

evolution of the interface shape for both B/Dx = 128 and B/Dx = 256. Obviously, the results are very sim-
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ilar. Yet, especially at later times, some slight differences can be discerned. These are due to the fact that at
later times, the finer grid resolves the small scale structures and hence the curvature and the surface tension

forces better.

The temporal evolution of the interface shape for We = 100 and increasing values of the spreading

parameter e is depicted in Fig. 24, while Fig. 25 shows the corresponding evolution of the amplitude A

of the disturbance. At early times, the interface instability grows roughly according to the results of linear

theory. For We = 100, the influence of the chosen initial condition for g is not as pronounced as in the

We = 50 and We = 20 cases, because here, the linear growth rate is closest to the We = 1 case used for

g(t = 0), see Table 2.
Unlike the previous two cases of lower Weber number, here, e has a large impact on the resulting inter-

face shape. For e = 16/256, the interface folds over, but does not roll up. The fingers simply continue to
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Fig. 25. Temporal evolution of the amplitude for We = 100 and spreading parameter e = 4/256 (solid line), e = 8/256 (dashed line),

e = 16/256 (dotted line), and linear theory (dashed dotted line).
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penetrate into the opposite fluid, because, due to the relatively large shear layer thickness, surface tension is

strong enough to prevent the initial roll-up, and the following evolution is similar to the We = 50 case.

Decreasing the shear layer thickness by setting e = 8/256, surface tension is no longer strong enough

to prevent the initial roll-up of the interface. Note, however, that the inner part of the interface barely

rotates past the vertical, and then quickly starts to unwind for later times, see also Fig. 26. Decreasing
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the shear layer thickness even further by setting e = 4/256, stretching is now strong enough to rotate the

inner part of the interface well past the vertical, and the ensuing unwinding is significantly delayed, see

Fig. 24. The observed interface geometry in this case is similar to the one observed by Tauber et al.

[55]. For both values of e, two thin ‘‘pinching necks’’ are formed, although neck pinching does not

actually occur.
Figs. 27 and 28 show the evolution of the lower ‘‘pinching neck’’ for e = 8/256 and e = 4/256 in more

detail. The origin in these figures is chosen to coincide with the inner point of the smallest neck dis-

tance for each individual time step. At early times, the streamlines are well aligned with the interface

and jet-like flows exist in the neck regions leading to a continual decrease in the neck widths as illus-

trated in Fig. 29. These jets are generated by pairs of positive and negative g at the thinning neck,

clearly visible at t = 4 in Fig. 30. However, once the central part of the interface starts to unwind in

the e = 8/256 case, the jet breaks down causing the neck width to remain almost constant thereafter,

see Fig. 29. At t = 6, when the interface has fully unwound, the positive and negative pairs of g have
completely disappeared in the former neck region, see Fig. 30. The reason for the unwinding can be

seen in the stretching term distribution S at t = 4. Apparently, a small amount of positive stretching

S that is not sufficiently balanced by tension T, leads to slightly positive values of g in the central part

of the interface, causing the local unwinding. Although this has not been observed in the inviscid case

by Hou et al. [20], it has been observed in the viscous simulations of Tauber et al. [55], albeit at a later

time. In the e = 4/256 case, the jet in the neck also starts to decrease in strength, but does not entirely

disappear, cp. Fig. 28, leading to a continual, albeit very small decrease in the neck width, see

Fig. 29.
At later times, the evolution of the amplitude of the stretching fingers for e = 8/256 and e = 16/256 coin-

cides very well, cp. Fig. 25. However, the thinning fingers rupture earlier at around t = 7.9 in the case of

e = 8/256, see Fig. 26, as compared to t = 9.3 for e = 16/256. In the e = 4/256 case, the thin fingers leading
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up to the necks rupture just when the unwinding of the central part of the interface sets in. Note, however,
that in all three cases, pinching does not occur at the initially formed necks. This is consistent with the

results of Tauber et al. [55].

In summary, the formation of the neck pinching singularity as observed in the inviscid simulations of

Hou et al. [20] is avoided in the simulations presented here, due to the introduction of a finite shear layer

thickness, mimicking the effect of viscosity. The results presented here are thus more in agreement with

those presented by Tauber et al. [55] for the fully viscous case.
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5. Conclusions

A Eulerian level set/vortex sheet method has been presented that allows for the calculation of the phase
interface dynamics between two inviscid fluids of equal density, taking the effect of surface tension forces

into account. The extension to three dimensions and fluids of different densities is straightforward. Results

calculated with the presented method are comparable to those obtained by Lagrangian vortex particle

methods. Furthermore, the calculated growth rates for the Kelvin–Helmholtz instability in the linear re-

gime are in very good agreement with the linear theory. The neck pinching singularity observed in the invis-

cid case of the long-time evolution of the Kelvin–Helmholtz instability for larger Weber numbers [20] is not

observed here. This is due to the desingularization introduced by the spreading parameter e, that effectively
fixes the local shear layer thickness to a finite value, thereby mimicking the effect of viscosity. The calculated
results are thus more in agreement with those reported for the viscous case [55]. Since the phase interface

location and motion are represented by a level set approach, topology changes of the interface, like breakup

and merging, are handled automatically. The main advantage of the presented method is the fact that it

allows for the direct study of the physical processes at the phase interface itself, specifically stretching

and surface tension effects.
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